

## INDIAN INSTITUTE OF TECHNOLOGY MADRAS CHENNAI 600 036

International Interdisciplinary Master's Programs Curriculum Master of Technology in Advanced Materials and Nanotechnology (2022-2024)

#### Curriculum (Master of Technology in Advanced Materials and Nanotechnology) (2022-2024)

#### Overview

The International Interdisciplinary Master's Programs (I2MP) are specially curated two-year programs that provide international students from any engineering background with a great opportunity to be part of the vibrant and world-class learning environment at IIT Madras. This document is aimed at providing a brief overview of the syllabus for the program.

IIT Madras is one of the only educational Institutions in India to offer this Interdisciplinary Master's Degree, providing students an unprecedented level of academic flexibility to learn and work in current areas that would define the future of global engineering and technology.

The International Interdisciplinary Master's degrees are available in nine interdisciplinary areas:

- ➢ Energy systems,
- > Robotics,
- Quantum Science and Technology,
- Computational Engineering,
- > Advanced Materials and Nanotechnology,
- ➢ Data Science,
- Cyber Physical Systems,
- Complex Systems and Dynamics, and
- ➢ Biomedical Engineering.

The International Interdisciplinary Master's Program provides a platform for international students with exceptional performance in their undergraduate programs to participate in these activities. In addition to courses in Data Science, and Biomedical Engineering, among others, the international students will take up courses in Indian culture as well. A dedicated research skills course will prepare them for their master's thesis work.

IIT Madras is constantly striving to expand the horizons of traditional engineering education and research and is home to the best and brightest. The institute has a rich culture of deep research, technology development and entrepreneurship, which have been developed over the decades without compromise on the teaching/learning of foundational science and engineering.

The Interdisciplinary Master's programs - offered to international students via the I2MP (International Interdisciplinary Master's Program), and to Indian students through the hugely popular Interdisciplinary Dual Degree (IDDD) - represent the culmination of decades of excellence at IIT Madras.

The first batch of foreign students joined the program in July 2022.

### **Program Structure:**

The 2-year program is offered over 4 semesters. Students complete Core Courses, Electives (Free and Core) and a Research project.

The core courses are designed to give a complete overview of the entire domain, the students are free to choose electives that will enable them to chalk out a further path of their choice. A large set of carefully selected electives are provided which will the student to explore a particular aspect of the program according to their area of interest. I2MP Core/Core courses should be completed during four semesters with the approval of faculty advisors and the ID coordinator.

Students will learn the skills of carrying out research in the research skills course. It is designed to build a foundation for the thesis work that will be completed in the third and fourth semester.

The thesis will involve one year of work completed in third and fourth semester and will be supervised by faculty from IIT Madras.

\*Note: This document is meant to be a guide and is subject to final approval by departments. There may be periodic revisions to the syllabus. Students are requested to confirm their course choices and electives with their respective program coordinators before registering.

## Topic

## Page

| Basket of I2MP Core Courses           | 4 |
|---------------------------------------|---|
| Basket of HSS Elective Courses        | 5 |
| Advanced Materials and Nanotechnology | 6 |

# Basket of I2MP Core Courses

| Course |                                                 | <b>G</b>  | Course |                                                     |           |
|--------|-------------------------------------------------|-----------|--------|-----------------------------------------------------|-----------|
| No.    | Course Name                                     | Semester  | No.    | Course Name                                         | Semester  |
| CH5020 | Statistical Design and                          | Jul - Nov | CE5235 | Introduction to Climate                             | Jul – Nov |
|        |                                                 | Jui 1107  | CL5255 | Dynamics and its wysteries                          | Jui 1107  |
| CH5650 | Molecular Data Science and<br>Informatics       | Jan - May | ED5015 | Computational Methods in Design                     | Jan – May |
| CH5170 | Process Optimization                            | Jan –May  | ED5017 | Digital Signal Processing for<br>Engineering Design | Jan – May |
| CH5019 | Mathematical Foundations<br>of Data Science     | Jan - May | ED5317 | Strategies for Managing innovation                  | Jul – Nov |
| CH5023 | Unconventional Oil and<br>Gas Resources         | Jan - May | ED5340 | Data Science: Theory and practice                   | Jul – Nov |
| EE6432 | Stochastic Control                              | Jul - Nov | ED6002 | Optimization methods in<br>Engineering Design       | Jul – Nov |
| EE6180 | Advanced Topics in<br>Artificial Intelligence   |           | ED5318 | Biomimetic Design                                   | Jan –May  |
| EE6150 | Stochastic Modeling and<br>the Theory of Queues |           | PH5820 | Classical Physics                                   | Jul - Nov |
| EE5413 | Linear Dynamical Systems                        | Jul - Nov | PH5825 | Quantum Physics                                     | Jan-May   |
| EE5412 | Mathematical Methods in<br>System Engineering   | Jul - Nov | EE5120 | Applied Linear Algebra                              | Jul – Nov |
| EE5401 | Measurements and<br>Instrumentation             | Jul - Nov | ED5012 | Advanced Applications of<br>Human Factors           | Jan –May  |
| EE5121 | Convex Optimization                             | Jul - Nov | ME5201 | Computational Methods in Engineering                | Jul - Nov |
| EE6430 | Fundamentals of Linear<br>Optimization          | Jan - May | ME5204 | Finite Element Analysis                             | Jul - Nov |

| EE6415 | Nonlinear Control Systems                               | Jan - May | ME5207 | Design with Advanced<br>Engineering Materials | Jul - Nov |
|--------|---------------------------------------------------------|-----------|--------|-----------------------------------------------|-----------|
| EE6412 | Optimal Control                                         | Jan - May | ME6355 | Topology optimization                         | Jan –May  |
| EE6150 | Stochastic Modeling and the<br>Theory of Queues         | Jan - May | ME6127 | Energy & Environment                          | Jan – May |
| EE6112 | Topics in Random<br>Processes and<br>Concentrations     | Jan - May | ME5204 | Finite Element Analysis                       | Jan – May |
| EE5180 | Introduction to Machine<br>Learning                     | Jul – Nov | MA5892 | Numerical Methods in<br>Scientific Computing  | Jul - Nov |
| AM6016 | Convective Transport<br>Processes                       | Jul – Nov | AM5090 | Flow Visualization and<br>Imaging Techniques  | Jan – May |
| MA5910 | Data Structures in<br>Scientific Computing              | Jul - Nov | MA5470 | Numerical Analysis                            | Summer    |
| PH6012 | Fundamentals of<br>Semiconductor Physics<br>and Devices | Jan - May |        |                                               |           |

## HSS Elective Courses Basket

| Course<br>Number | Course Number                              | Semester  |
|------------------|--------------------------------------------|-----------|
| HS6080           | An Intro. to Classical Sanskrit Literature |           |
| HS6026           | Indian Aesthetic Thought                   |           |
| HS5711           | Ethics                                     | Jul - Nov |
| HS5650           | Drama                                      | Jul - Nov |
| HS5712           | Advanced Topics in Economic Development    | Jul - Nov |
| HS5813           | Post-Colonial & New Writings               | Jul - Nov |
| HS6520           | Culture and Development                    | Jan – May |
| HS6160           | The Literature of Environmental Justice    | Jul – Nov |
| HS5060           | Technology & Sustainable Development       | Jan – May |

\*All courses will be taken with the prior approval of faculty advisors and the ID coordinator.

### **Advanced Materials and Nanotechnology**

Understanding the physics and chemistry of matter and processes at the nanoscale is essential to all scientific disciplines. Advanced Materials and Nanotechnology are both interdisciplinary research fields with opportunities to collaborate across diverse research areas and to share knowledge, tools, and techniques. The International Interdisciplinary Master's Program in Advanced Materials and Nanotechnology is carefully tailored to provide avenues to explore the rapidly expanding scientific horizons in these research areas where great strides are expected in the coming decades. The core courses of this program lay a solid foundation in this research area. The student can subsequently leverage upon the large basket of electives and choices of pursuing final year projects across participating departments.

| S. No.     | Course No.  | Course Name                                   | L | Т | E | Р | 0  | С        |
|------------|-------------|-----------------------------------------------|---|---|---|---|----|----------|
| Semester 1 |             |                                               |   |   |   |   |    |          |
| 1          | GN5004      | Research Skills                               | 0 | 0 | 0 | 3 | 0  | 3        |
| 2          |             | I2MP Core 1*                                  |   |   |   |   |    | 9 to 12  |
| 3          | HS Elective |                                               |   |   |   |   |    | 9 to 12  |
| 4          | PH5011      | Core 1: Science and Technology of Solid State | 3 | 1 | 0 | 0 | 6  | 10       |
| 5          | PH6022      | Core 2: Introduction to Nanoscience           | 3 | 0 | 0 | 0 | 6  | 9        |
|            |             | Total Credits                                 |   |   |   |   |    | 40 to 46 |
| Semester 2 |             |                                               |   |   |   |   |    |          |
| 1          | HS5050      | Indian Culture                                | 0 | 0 | 0 | 3 | 0  | 3        |
| 2          |             | I2MP Core 2*                                  |   |   |   |   |    | 9 to 12  |
| 3          | PH6011      | Nanomaterials and Nanotechnology              | 3 | 0 | 0 | 0 | 6  | 9        |
| 4          | PH6015      | Advanced Materials and Nanotechnology Lab     | 0 | 0 | 0 | 6 | 2  | 8        |
| 5          | Elective 1  |                                               | 3 | 0 | 0 | 0 | 6  | 9        |
| 6          | Elective 2  |                                               | 3 | 0 | 0 | 0 | 6  | 9        |
|            |             | Total Credits                                 |   |   |   |   |    | 47 to 50 |
| Summer     |             |                                               |   |   |   |   |    |          |
| 1          | PH5361      | Project I (Summer) (in IITM)                  | 0 | 0 | 0 | 0 | 25 | 25       |
|            |             | Total Credits                                 |   |   |   |   |    | 25       |
| Semester 3 |             |                                               |   |   |   |   |    |          |
| 1          | Elective 3  |                                               | 3 | 0 | 0 | 0 | 6  | 9        |
| 2          | Elective 4  |                                               | 3 | 0 | 0 | 0 | 6  | 9        |
| 3          | PH5362      | Project II (in IITM)                          | 0 | 0 | 0 | 0 | 20 | 20       |
|            |             | Total Credits                                 |   |   |   |   |    | 38       |

6

| Semester 4 |        |                       |   |   |   |   |    |    |
|------------|--------|-----------------------|---|---|---|---|----|----|
| 1          | PH5363 | Project III (in IITM) | 0 | 0 | 0 | 0 | 40 | 40 |
|            |        | Total Credits         |   |   |   |   |    | 40 |

Electives as per *Pg 57 & 58 of DD curriculum 2019*I2MP & HSS courses as mentioned in Pg 4-5 (PH courses may be preferred for the I2MP Core)

| List o | f Electives |                                                               |   |   |   |   |   |    |
|--------|-------------|---------------------------------------------------------------|---|---|---|---|---|----|
| 1      | PH5310      | Synthesis of Functional Materials                             | 3 | 0 | 0 | 0 | 6 | 9  |
| 2      | PH5320      | Techniques of Physical measurements                           | 3 | 0 | 0 | 0 | 6 | 9  |
| 3      | PH5730      | Methods of Computational Physics                              | 3 | 0 | 0 | 0 | 6 | 9  |
| 4      | PH5670      | Physics and Technology of Thin Films                          | 3 | 0 | 0 | 0 | 6 | 9  |
| 5      | PH5690      | Applied Magnetics                                             | 3 | 0 | 0 | 0 | 6 | 9  |
| 6      | PH5600      | Physics at Low Temperatures                                   | 3 | 0 | 0 | 0 | 6 | 9  |
| 7      | PH5680      | Superconductivity and applications                            | 3 | 0 | 0 | 0 | 6 | 9  |
| 8      | PH6013      | Functional materials, Sensors and Transducers                 | 3 | 0 | 0 | 0 | 6 | 9  |
| 9      | PH5813      | Principles of nano photonics                                  | 3 | 0 | 0 | 0 | 6 | 9  |
| 10     | PH5462      | Magnetism in solids                                           | 3 | 0 | 0 | 0 | 6 | 9  |
| 11     | PH5660      | Non-linear Optical Processes & Devices                        | 3 | 0 | 0 | 0 | 6 | 9  |
| 12     | EE5347      | Electronic and Photonic nanoscale devices                     | 3 | 0 | 0 | 0 | 6 | 9  |
| 13     | EE6500      | Integrated Optoelectronics Devices and Circuits               | 3 | 1 | 0 | 0 | 6 | 10 |
| 14     | ID6102      | Principles and techniques of Transmission Electron Microscopy | 3 | 0 | 0 | 0 | 6 | 9  |
| 15     | ID5010      | Advanced materials and processing                             | 3 | 0 | 0 | 0 | 6 | 9  |
| 16     | ID6050      | Chemical Physics of Modern Technical Ceramics                 | 3 | 0 | 0 | 0 | 6 | 9  |
| 17     | ID6105      | Computational Tools: Algorithms, Data Structures and Programs | 3 | 0 | 0 | 0 | 6 | 9  |
| 18     | MM5210      | X-ray diffraction techniques                                  | 3 | 0 | 0 | 0 | 6 | 9  |
| 19     | MM5680      | Smart Materials                                               | 3 | 0 | 0 | 0 | 6 | 9  |
| 20     | MM5700      | Topics in nanomaterials                                       | 3 | 0 | 0 | 0 | 6 | 9  |
| 21     | MM5017      | Electronic materials devices and Fabrication                  | 3 | 0 | 0 | 0 | 6 | 9  |

| 22 | ME7023 | Foundations of Computational Materials Modeling    | 3 | 0 | 0 | 0 | 6 | 9  |
|----|--------|----------------------------------------------------|---|---|---|---|---|----|
| 23 | CY6380 | A Chemical Approach to Nanomaterials               | 3 | 0 | 0 | 0 | 6 | 9  |
| 24 | CH5012 | Modeling and Simulation of Particulate Processes   | 3 | 0 | 0 | 0 | 6 | 9  |
| 25 | CH5021 | Molecular Simulation of Soft Matter                | 3 | 0 | 0 | 0 | 6 | 9  |
| 26 | CH5270 | Polymers for Devices                               | 3 | 0 | 0 | 0 | 6 | 9  |
| 27 | CY6118 | Experimental methods in chemistry                  | 3 | 0 | 0 | 0 | 6 | 9  |
| 28 | ID6030 | Introduction to nano science and nanotechnology    | 3 | 0 | 0 | 0 | 6 | 9  |
| 29 | EE5343 | Solar Cell Device Physics and Materials Technology | 3 | 0 | 0 | 0 | 6 | 9  |
| 30 | EE5346 | Introduction to plastic electronic                 | 3 | 0 | 0 | 0 | 6 | 9  |
| 31 | EE5340 | Micro Electro Mechanical Systems                   | 3 | 0 | 0 | 0 | 6 | 9  |
| 32 | EE5312 | VLSI Technology                                    | 3 | 1 | 0 | 0 | 6 | 10 |
| 33 | CH5190 | Introduction to Macromolecules                     | 3 | 0 | 0 | 0 | 6 | 9  |
| 34 | MM5041 | Medical Materials                                  | 3 | 0 | 0 | 0 | 6 | 9  |
| 35 | MM5460 | Physical Ceramics                                  | 3 | 0 | 0 | 0 | 6 | 9  |
| 36 | AM5470 | Analysis & Design of Smart Material Structure      | 3 | 0 | 0 | 0 | 6 | 9  |
| 37 | AM6190 | Cellular structures and mechanics                  | 3 | 0 | 0 | 0 | 6 | 9  |
| 38 | AM6512 | Application of Molecular Dynamics                  | 3 | 0 | 0 | 0 | 6 | 9  |

# **Detail Syllabus of courses**

|                        | Classical Physics - PH5820                                                                      |
|------------------------|-------------------------------------------------------------------------------------------------|
| Description            | A first course on classical physics for non-physics majors, covering the Lagrangian and         |
|                        | Hamiltonian formulations, statistical mechanics and special relativity.                         |
| <b>Course Content</b>  | Calculus of Variations, the action principle, the Lagrangian formulation, symmetries and        |
|                        | conserved quantities, the Hamiltonian formulation, statistical physics, and special relativity. |
| Text Books             | (1) S. T. Thornton and J. B. Marion, Classical Dynamics of Particles and Systems (Cengage       |
|                        | Learning, Singapore, 2004).                                                                     |
|                        | (2) H. Goldstein, C. Poole and J. Safko, Classical Mechanics, Third Edition (Pearson            |
|                        | Education, Singapore, 2002).                                                                    |
|                        | (3) F. Reif, Statistical Physics, Berkeley Physics Course, Volume V (Tata McGraw-Hill,          |
|                        | New Delhi, 2008).                                                                               |
|                        | (4) R. Resnick, Introduction to Special Relativity (Wiley Eastern, New Delhi, 1985).            |
| <b>Reference Books</b> | (1) L. D. Landau and E. M. Lifshitz, Mechanics, Course of Theoretical Physics, Volume 1,        |
|                        | Third Edition (Pergamon Press, New York, 1976).                                                 |
|                        | (2) D. Kleppner and R. J. Kolenkow, An Introduction to Mechanics (Tata McGraw-Hill, New         |
|                        | Delhi, 1999).                                                                                   |
|                        | (3) C. Kittel, Elementary Statistical Physics (Wiley, New York, 1966).                          |
|                        | (4) A. P. French, Special Relativity (W. W. Norton, New York, 1968).                            |
| Prerequisite           |                                                                                                 |

| Introduction to Nanoscience - PH6022 |                                                                                                 |  |  |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|
| Description                          | To develop an understanding of the science behind various unique physical phenomena             |  |  |  |
|                                      | associated with the nano-metric scale.                                                          |  |  |  |
| Course Content                       | 1. What is Nanoscience: Bulk, polycrystalline and single crystalline materials. Bulk physical   |  |  |  |
|                                      | properties electrical conductivity, thermal conductivity, specific heat, bandgap, reflectivity, |  |  |  |

|                        | magnetic property etc. Brief Historic perspective of nanoscience: Colored Glasses, IC Chips.                                                                                                                                                                         |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | Physics of low dimensional systems. [12 classes] 2.Band Theory, Optical and Electronic                                                                                                                                                                               |
|                        | Properties at the Nanoscale: Band theory considerations to understand nanoscience.                                                                                                                                                                                   |
|                        | Schrödinger equation, quantum confinement effects: particle in a box, energy level                                                                                                                                                                                   |
|                        | quantization, Tunneling, Electronic band structure, Brillouin zone boundary scattering, basic                                                                                                                                                                        |
|                        | aspects of diffraction. A complete account of the density of states formalism for low-                                                                                                                                                                               |
|                        | dimensional systems. [12 classes] 3. Low Dimensional Systems: Dependence of key physical                                                                                                                                                                             |
|                        | properties on dimensionality: Classification of nanomaterials - 2D, 1D, 0D systems with                                                                                                                                                                              |
|                        | examples. 0D materials. Nano-clusters of metals and semiconductors, Bandgap tuning, Oxide                                                                                                                                                                            |
|                        | Nanoparticles and their Optical Properties. 1D materials: Nanowires. Charge Transport in                                                                                                                                                                             |
|                        | Nanowires. 2D materials: 2D electron gas, Hall effect, quantum Hall effect, Heterostructures                                                                                                                                                                         |
|                        | and interfacial epitaxy, blue LED, Q-cascade lasers. Classical Interpretation of Magnetic                                                                                                                                                                            |
|                        | Phenomena. Magnetism in low-dimensional systems. Magnetic Nanostructures. [10 classes]                                                                                                                                                                               |
|                        | 4. Structure and Kinetics at the Nanoscale: Macro-, micro-, crystal- and atomic-structure                                                                                                                                                                            |
|                        | aspects. Types of nanomaterials and nanostructures. Different shapes and sizes of nano                                                                                                                                                                               |
|                        | systems. Geometric Surface-to-Volume Ratio. Diffusion kinetics in nanoparticles, theories to                                                                                                                                                                         |
|                        | explain size-dependent cohesive energy. [10 classes]                                                                                                                                                                                                                 |
| Text Books             | 1. Introduction to Nanoscience and Nanotechnology, By Gabor L. Hornyak, H.F. Tibbals,<br>Joydeep Dutta, John J. Moore, CRC Press, (2008). 2. Nanoscience and Nanotechnology:<br>Fundamentals to Frontiers, M.S. Ramachandra Rao, Shubra Singh, Wiley India Pyt, Ltd. |
|                        | (2013).                                                                                                                                                                                                                                                              |
| <b>Reference Books</b> | 1. Introduction to Nano: Basics to Nanoscience and Nanotechnology, A. Sengupta (Editor),                                                                                                                                                                             |
|                        | C.K. Sarkar (Editor), Springer, (2015). 2. Nanostructures and Nanomaterials: Synthesis,                                                                                                                                                                              |
|                        | Properties and Applications (World Scientific Series in Nanoscience and Nanotechnology),                                                                                                                                                                             |
|                        | G. Cao, Y. Wang, World Scientific, (2011). 3. Introduction to Nanoscience, Stuart Lindsay,                                                                                                                                                                           |
|                        | OUP Oxford, (2009).                                                                                                                                                                                                                                                  |
| Prerequisite           |                                                                                                                                                                                                                                                                      |

|                        | Research Skills - GN5004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description            | This course is meant to build research skills in post-graduate students. For students entering postgraduate programs from a course-heavy undergraduate program, the basic tools for a healthy relationship with research need to be explicitly brought to bear. The course will involve the practice of research paper review and critical analysis, literature search, and communication & interpersonal skills for researchers. • Understand the roles and responsibilities of researchers • Identify attitudes and habits required for success in research • Recognise ethical & safety issues • Perform detailed literature search harnessing modern tools • Practice reading and critical analysis of peer-reviewed research articles • Communicate & analyse sample research findings in various format (posters, PPTs, reports) |
| Course Content         | ● Introduction to research ● Literature search ● Critical analysis of research articles ● Technical writing ● Lab safety ● Ethics, Workplace diversity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Text Books             | <ul> <li>The Elements of Style by William Strunk Jr. and E. B. White, 2003 • The Joy of Research by C. Balaji, 2015 • The Grammar of Science - Karl Pearson • Truth and Beauty - Aesthetics and Motivations in Science - S. Chandrasekhar • Advice to a Young Scientist - P. B. Medawar • Science and Hypothesis - H. Poincare</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>Reference Books</b> | Will be shared as required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Prerequisite           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Science and Technology of Solid State - PH5011 |                                                                                                  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Description                                    | The course will deal interesting phenomena that are not only relevant from a fundamental         |
| Description                                    | The course will deal interesting phenomena that are not only relevant from a fundamental         |
|                                                | point of view, but often have important applications. The aim is to bring students into contact  |
|                                                | with modern research topics, and at the same time to lay a good foundation in the physics of     |
|                                                | atoms, molecules and condensed matter. The course deals with exploration of materials with       |
|                                                | novel physical characteristics, applying these fundamental properties in engineering artificial, |
|                                                | mostly nanoscale, device structures.                                                             |
| Course Content                                 | (1) Crystal Structure: Fundamental properties of condensed matter: Crystal systems, Bravais      |
|                                                | lattices, space groups, reciprocal lattice, crystal symmetries, packing fraction.), bonding in   |
|                                                | materials (covalent, ionic, metallic, van der Waals, hydrogen) X-ray diffraction for structure   |
|                                                | determination neutron diffraction for (magnetic) structure determination and electron            |
|                                                | diffraction Relate the reciprocal lattice to the crystal lattice (structure) lattice vibrations  |
|                                                | (thermal acoustic and ontical properties)(2) Physical Properties: From atoms to solids           |
|                                                | classification of solids (crystalline nanocrystalline protocrystalline amorphous) hand           |
|                                                | structure of metals and semiconductors, superconductivity, dielectric and ferroelectrics and     |
|                                                | succure of metals and semiconductors, superconductivity, defecting and refloefectings and        |
|                                                | I magnetic properties of materials; Density of States, mobility bandgap and optical bandgap      |

|                 | (direct and indirect), Electrical conductivity in crystalline, polycrystalline and amorphous   |
|-----------------|------------------------------------------------------------------------------------------------|
|                 | materials, Theory of optical absorption – absorption processes, direct and indirect,           |
|                 | luminescence (3) Semiconductors: Introduction and basics of semiconductor physics              |
|                 | Metal/semiconductor junction. Ideal p-n junction, electrostatic and current conduction, effect |
|                 | of voltage and light bias, recombination at the junction.(4) Modern Condensed Matter,          |
|                 | Devices and Applications: Various phenomena and solid state systems in modern condensed        |
|                 | matter; the quantum Hall effect, single-electron tunneling, spintronics, plasmonics,           |
|                 | (nano)photonics, photonic crystals, coherent atoms in optical lattices, quasicrystals, Hot     |
|                 | carriers, Upconversion, Down conversion, Intermediate band gap (IBG), multiple carrier         |
|                 | generation, metamaterials, phase change materials, plasma dust, quantum dots, quantum          |
|                 | wires, (Carbon) nanotubes, graphene, nano-antenna, (moth-eye) ARC, organic semiconductor       |
|                 | sensors Plastic electronics                                                                    |
| Text Books      | J.R. Hook & H.E. Hall, Solid State Physics (Publisher: Wiley) (2nd Edition) (e.book            |
|                 | available) Asserts and Marmin Solid State Physics, Harcourt Asia PTE I td. (1076)              |
|                 | available) Aschioft and Merinin Sond State Physics, Halcourt Asia PTE Ltd. (1970).             |
| Reference Books | B.D. Cullity Elements of X-ray Diffraction, Addison-Wesley (1956).C. Kittel Introduction to    |
|                 | Solid State Physics, John Wiley & Sons 8 Ed. (2004).M. Ali Omar Elementary Solid State         |
|                 | Physics, Addison-Wesley (1975). A. J. Dekker Solid State Physics, Macmillan Publishers         |
|                 | India (2000). F. Reif Statistical Physics: Berkeley Physics Course, McGraw-Hill                |
|                 | (1967). Arthur Beiser Concepts of Modern Physics, McGraw-Hill (2006). Rolf E. Hummel           |
|                 | Electronic Properties of Materials, Springer (2001). David J. Griffiths Introduction to        |
|                 | Quantum mechanics, Prentice Hall (1994). David Jiles Electronic Properties of Materials,       |
|                 | Nelson Thornes Ltd. (2001).B.D. Cullity Introduction to Magnetic Materials, Addison-           |
|                 | Wesley (1972).S.M. Sze Physics of Semiconductor Devices, John Wiley & Sons 8 Ed.               |
|                 | (2007).P.R.L. Regtien Measurement science for engineers, Springer-Verlag London Limited        |
|                 | (2007).Stephen Blundell Magnetism in Condensed Matter, Oxford University Press (2001).         |
| Prerequisite    |                                                                                                |

| Advanced Materials and Nanotechnology Lab - PH6015 |                                                                                                 |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Description                                        | To introduce laboratory techniques for the synthesis and characterization of advanced           |
|                                                    | materials, and techniques in nanotechnology.                                                    |
| Course Content                                     | Growth of thin films using PVD, synthesis of materials such as carbon nanomaterials,            |
|                                                    | magnetic nanoparticles and 2D systems. Characterization of the above materials using            |
|                                                    | techniques such as SEM, TEM, Raman spectroscopy, XRD, magnetization studies, XPS,               |
|                                                    | AFM and electrical transport. Hardness test and electrical transport studies on nanocrystalline |
|                                                    | diamond. Photo I-V characterization of solar cells.                                             |
| Text Books                                         | Handout notes will be provided.                                                                 |
| <b>Reference Books</b>                             | Handout notes will be provided.                                                                 |
| Prerequisite                                       |                                                                                                 |

| Application of Molecular Dynamics - AM6512 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                                | The primary objective of this course is to introduce the concept, theory and applications of<br>Molecular Dynamics to the students of different departments such as Applied Mechanics,<br>Chemistry, Biotechnology, Materials Science etc. Another objective is to help students in<br>developing fundamental skill of building models, running simulations and analyzing<br>Molecular Dynamics (MD) data which will be extremely helpful in their future research.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Course Content                             | Introduction; Concept of Length Scale & Time Scale; Hierarchy in materials (e.g. bone,<br>nanocomposites, clay); Different material characterization techniques (e.g SEM, TEM,<br>AFM, Nanoindentation, etc); Limitations of experimental techniques and necessity of<br>molecular modelling for further details; Introduction to different modeling (simulation)<br>techniques (e.g. MD, CG, DEM, FEM etc); Concept of multiscale modeling. Theory of<br>Molecular Dynamics (MD); MD and its general applications; mathematical formulation of<br>MD; Energy terms and Concept of force field; Different potentials (bonded and non-bonded)<br>and their suitability to material types; PBC; Ewalds summation techniques; Force field<br>parameter derivations; Steps in running MD. Application of MD; Lipid protein interaction;<br>Surface modifications – organic and inorganic; Functionalization of polymers; Interactions in<br>Polymer clay nanocomposites; Protein-ligand interactions; Clay water interactions; Ion<br>channels; Artificial bone. Analysis of MD Data; Auto correlation functions; Radial<br>Distribution Functions; Thermodynamic properties; Binding Energy & Total Free energy;<br>Mechanical properties: Interface adhesion |
| Text Books                                 | <ol> <li>Molecular Dynamics Simulation: Elementary Methods, J. M. Haile, Wiley Professional, 1997.</li> <li>Molecular Modelling: Principles and Applications (2nd Edition): A. R. Leach, Prentice Hall, 2001</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Reference Books | <b>1.</b> Understanding Molecular Simulation, Second Edition: From Algorithms to Applications. Frenkel & Smit, Academic Press, 2001 |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Prerequisite    | NULL                                                                                                                                |

| Application of Molecular Dynamics - AM6512 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                                | The primary objective of this course is to introduce the concept, theory and applications of<br>Molecular Dynamics to the students of different departments such as Applied Mechanics,<br>Chemistry, Biotechnology, Materials Science etc. Another objective is to help students in<br>developing fundamental skill of building models, running simulations and analyzing<br>Molecular Dynamics (MD) data which will be extremely helpful in their future research.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Course Content                             | Introduction; Concept of Length Scale & Time Scale; Hierarchy in materials (e.g. bone,<br>nanocomposites, clay); Different material characterization techniques (e.g SEM, TEM,<br>AFM, Nanoindentation, etc); Limitations of experimental techniques and necessity of<br>molecular modelling for further details; Introduction to different modeling (simulation)<br>techniques (e.g. MD, CG, DEM, FEM etc); Concept of multiscale modeling. Theory of<br>Molecular Dynamics (MD); MD and its general applications; mathematical formulation of<br>MD; Energy terms and Concept of force field; Different potentials (bonded and non-bonded)<br>and their suitability to material types; PBC; Ewalds summation techniques; Force field<br>parameter derivations; Steps in running MD. Application of MD; Lipid protein interaction;<br>Surface modifications – organic and inorganic; Functionalization of polymers; Interactions in<br>Polymer clay nanocomposites; Protein-ligand interactions; Clay water interactions; Ion<br>channels; Artificial bone. Analysis of MD Data; Auto correlation functions; Radial<br>Distribution Functions; Thermodynamic properties; Binding Energy & Total Free energy;<br>Mechanical properties; Interface adhesion |
| Text Books                                 | <ol> <li>Molecular Dynamics Simulation: Elementary Methods, J. M. Haile, Wiley Professional,<br/>1997.</li> <li>Molecular Modelling: Principles and Applications (2nd Edition): A. R. Leach, Prentice<br/>Hall, 2001</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Reference Books                            | <b>1.</b> Understanding Molecular Simulation, Second Edition: From Algorithms to Applications.<br>Frenkel & Smit, Academic Press, 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Prerequisite                               | NULL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|             | Fundamentals of Semiconductor Physics and Devices - PH6012                                                                                                                                                                                                                                                            |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description | Learning Objectives: At the end of the course the students are expected to achieve- (a)<br>Understanding of basic physical process in semiconductors (b) Analysis of the charge<br>conduction across p-n junctions and devices (c) Designing of experiments for measuring<br>semiconductor parameters and properties. |

| <b>Course Content</b>  | Review of the Band theory of solids, Metal, Insulator and Semiconductor, Effect of                           |
|------------------------|--------------------------------------------------------------------------------------------------------------|
|                        | temperature and electric field on the band structure, Concept of Fermi energy, Concept of                    |
|                        | electron and hole, concept of effective mass; p and n type doping, heavy doping and                          |
|                        | degeneracy. Direct and indirect band gap semiconductors and their identification. Allowed                    |
|                        | and forbidden transitions, phonon assisted transition and their spectral shapes, Burstein Moss               |
|                        | effect; Excitons: free and bound. Electrical conductivity and mobility of charge carriers;                   |
|                        | mechanisms of scattering; Generation and recombination of charge carriers; Hall-Shockley-                    |
|                        | Reed theory of recombination Equilibrium and non-equilibrium processes, Charge transport                     |
|                        | equation Metal-semiconductor junctions, Ohmic and Schottky contacts, Schottky barrier and                    |
|                        | barrier lowering effects Theory of p-n junction, concept of depletion later, resistance and                  |
|                        | capacitance across the depletion layer Charge transport in a p-n junction; Practical junctions               |
|                        | and Ideality factor; Space charge and diffusion capacitances. Surface states and related band                |
|                        | bending Measurement of carrier type and mobility - Hall effect; Measurement of band gap-                     |
|                        | optical absorption spectroscopy; Effective mass- Cyclotron resonance experiment, Impurity                    |
|                        | profiling through capacitance measurements; Conductivity measurement Diodes – Zener,                         |
|                        | Tunnel, LED, Gunn, Laser and other diodes; Transistors – unipolar and bipolar; Solar cells,                  |
|                        | Photodetectors                                                                                               |
| Text Books             | 1. Semiconductor Physics and Devices by Donald Neaman (Tata McGraw Hill)                                     |
|                        | 2. Fundamentals of Semiconductor Devices by Achuthan and Bhat (Tata McGraw Hill)                             |
| <b>Reference Books</b> | 1. Physics of semiconductor devices by S O Kasap                                                             |
|                        | 2. Semiconductor Devices by S M SZe (Wiley)<br>3. Physics of Semiconductor Devices by Michael Shur (Pearson) |
| Prerequisite           | Basic solid-state physics. Familiarity with Band s                                                           |

|                 | Indian Culture - HS5050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Description     | This course is an introduction to Indian culture, history, philosophy, religion, economy, society, art, architecture, fine arts, literature, science and technology. The course would be a survey of ancient, medieval, modern and contemporary India. The orientation of the course is to provide a practical understanding of India's "unity in diversity" while utilizing textual resources to provide a theoretical framework. Documentaries, films, field visits to museums, archaeological sites, historical places and music and dance concerts would form an integral part of the course work to show the linkages with the past and to analyze how relevant the past is to an understanding of contemporary India. <b>Outcomes:</b> Students would gain a nuanced understanding of the complex cultural history of the Indian subcontinent which possesses mind boggling diversity of religions, regions, languages, ethnicity and socio-economic groups. This course would also highlight the challenges of negotiating diversity in contemporary India. It would highlight how Indian democracy serves as the crucible of contestation and dialogue between variegated viewpoints.                                                                                                                                                                                                                        |  |
| Course Content  | <ol> <li>Ancient India - An overview of Indus Valley Civilization 2. Political economy and society<br/>in Ancient India 3. The origins of Art, culture, philosophy and religion in various regions of<br/>Ancient India 4. An introduction to early Hinduism, Buddhism and Jainism 4. Early<br/>Medieval India - The history of three powerful kingdoms - Harshavardhana, Pulakesin-II and<br/>Mahendravarma and Narasimhavarma Pallava 5. Medieval Art and Architecture - Ajanta,<br/>Ellora, Mamallapuram, Kailasanatha, Brihadeeswara, Gangaikonda Cholapuram, Srirangam,<br/>Madurai, Chidambaram and Darasuram 6. Indo-Saracenic art and architecture - Taj Mahal,<br/>Agra and Delhi Red Forts, Jaipur Hawa Mahal, Bada Imambara Lucknow - Chikan 7. Sufi<br/>Islam, Medieval devotional movements and the origins of Sikhism as a new faith 8. Indian<br/>Medicine - Charaka, Susruta and Vagbhatta 9. Science and Technology tradition in India -<br/>Bhaskara, Aryabhatta and Brahmagupta 10. Mughal Empire - state and economy 11. India<br/>under the British rule - East India Company, 1857 First War of Independence and India under<br/>the British Crown 12. India's Freedom Movement, Round Table Conferences and Partition -<br/>Tilak, Gandhi, Nehru, Patel, Ambedkar, Jinnah, Azad and Prasad 13. India's Constituent<br/>Assembly Debates 14. Post-independence India - 1947 to 2021</li> </ol> |  |
| Text Books      | <ol> <li>Basham, A.L., (ed) A Cultural History of India, Oxford: Oxford University Press, 1975.</li> <li>Guha, Ramachandra, India After Gandhi: The History of World's Largest Democracy,<br/>New Delhi: Picador India, 2017.</li> <li>Austin, Granville, Working in a Democratic Constitution: A History of the Indian<br/>Experience, Oxford: Oxford University Press, 2003.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Reference Books | <ol> <li>Pulakkat, Hari, Space, Life, Matter: The Coming of Age of Indian Science, Gurugram:<br/>Hatchette India, 2021.</li> <li>Coomaraswamy, Ananda, The Dance of Shiva, New Delhi: Rupa Publications, 2013.</li> <li>Guha, Ramachandra, Gandhi Before India, New Delhi: Penguin India, 2013.</li> <li>Basham, A.L., The Wonder That Was India, New Delhi: Picador India, 2004.</li> <li>Austin, Granville, The Indian Constitution: Cornerstone of A Nation, Oxford: Oxford<br/>University Press, 1999.</li> <li>Nehru, Jawaharlal, The Discovery of India, New Delhi: Penguin India, 2008.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

|              | 7. Narayan, R.K., Malgudi Days, Mysore: Indian Thought Publications, 1943.                       |
|--------------|--------------------------------------------------------------------------------------------------|
|              | 8. Eck, Diana L., India: A Sacred Geography, New York: Three Rivers Press, 2012.                 |
|              | 9. Lahiri, Nayanjot, Time Pieces: A Whistle-Stop Tour of Ancient India, Gurugram: Hachette       |
|              | India, 2018.                                                                                     |
|              | <b>10</b> . Singh, Upinder, A History of Ancient and Early Medieval India: From Stone Age to the |
|              | 12th Century, New Delhi: Pearson Education India, 2009.                                          |
| Prerequisite |                                                                                                  |

| Nanomaterials and Nanotechnology - PH6011 |                                                                                              |
|-------------------------------------------|----------------------------------------------------------------------------------------------|
| Description                               | As a follow up of the first semester course where the students would have received nice      |
|                                           | introductory lectures on the basic aspects of low dimensional systems, quantum confinement   |
|                                           | etc., in this course, students will learn more about how to synthesize nanomaterials and how |
|                                           | the synthesis methods influence the size and shape of nanosystems. They will learn about     |
|                                           | various characterization techniques. They will also get a glimpse of various technological   |
|                                           | aspects of nanosystems, including some useful industrial applications.                       |
| Course Content                            | Introduction to nanoscale objects: Nanoclusters, Nanosheets, Nanowires, Nanostructures.      |
|                                           | Basic synthesis methods of nanosystems: Top-down and bottom-up approaches.                   |
|                                           | Experimental tools for nanoscience: Preparation, fabrication and manipulation of             |
|                                           | nanostructures. Lithography and etching processes: Photoresists, subtractive and additive    |
|                                           | pattern transfer, Lithographic methods; UV-and coherent UV lithography, electron beam        |
|                                           | lithography, x-ray and proton beam lithography, ion projection lithography, focused ion beam |
|                                           | (FIB) lithography; Emerging nanolithographic methods; Nanoimprint Lithography,               |
|                                           | Nanoembossing, soft lithography, Near-Field lithography, Dip-pen lithography.                |
|                                           | Characterization of Nanomaterials and nanostrcutures: X-ray crystallography, peak            |
|                                           | broadening (Scherrer method), Optical techniques: Confocal Raman spectroscopy and Raman      |
|                                           | mapping, Time-resolved spectroscopy Electrical conductivity and Impedance, Specific heat     |
|                                           | measurements Electron microscopy (FESEM, HRTEM, STEM), and spectroscopy techniques           |
|                                           | (Atomic resolution EDS and EELS), ARPES, XAS, EXAFS and atom probe techniques.               |

|                        | SPM techniques (STM, AFM, PFM, MFM, SNOM, etc). Properties and Applications:              |
|------------------------|-------------------------------------------------------------------------------------------|
|                        | Molecular electronics Nanomagnetism, nano-piezotronics and Spintronics Information        |
|                        | storage; Magnetic recording. Magnetic nanoparticles, drug delivery, and cancer therapy.   |
|                        | Optronics: Surface plasmons and nanoscale optics; semiconductor quantum dots; Photonic    |
|                        | crystals Nanocrystalline diamond, nanostructured films for sensor and space applications. |
|                        | Nano Electromechanical systems (NEMS) etc.                                                |
| Text Books             | Nanoscience and Nanotechnology: Fundamentals to Frontiers, MSR Rao and Shubra Singh,      |
|                        | Wiley                                                                                     |
| <b>Reference Books</b> | Nanomaterials: An Introduction to Synthesis, Properties and Applications, 2nd Edition,    |
|                        | Dieter Vollath (2013) Nanoscience: Nanotechnologies and Nanophysics, C. Dupas P. Houdy    |
|                        | M. Lahmani (Eds.), Springer 2004 Editions Belin, France. Nanophysics and Nanotechnology:  |
|                        | An Introduction to Modern concepts in Nanoscience, Edward L. Wolf, Wiley-VCH Verlag       |
|                        | GmbH and Co. (2004). Introduction to Nanoscience and Nanotechnology, Chris Binns,         |
|                        | Wiley.                                                                                    |
| Prerequisite           |                                                                                           |

| Computational Tools: Algorithms, Data Structures and Programs - ID6105 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                                                            | This is intended to be an intermediate course in the development of necessary tools for scientific problem-solving. The focus will be on learning data structures and algorithms through the code development process. The course would emphasize the self-learning aspect (need-based learning, on-demand learning) with reference to new programming paradigms and emerging coding practices from the Engineering industry                                                                                                                                                                                                                                                                                                                                                                                                   |
| Course Content                                                         | Fundamentals of programming, with emphasis on engineering problem solving; Broad<br>spectrum of tools needed for Code development; Compilers, linkers, debuggers; Code<br>(software) development process; Code optimization techniques, memory hierarchy,<br>Performance measuring tools for programs; Utility of Data Structures such as Arrays and<br>pointers, Linked lists, Queues, stacks and trees; Sorting and searching methods and their<br>algorithmic efficiency; Implementation specific examples drawn from grid generators, mesh<br>based and mesh-free methods used in engineering, other relevant engineering applications<br>Introduction to Symbolic Computing; Using Maple and Mathematica for scientific problem<br>solving; Demonstrating the utility and implementation of these tools in solving PDE's. |
| Text Books                                                             | <b>1.</b> S R. Lerman, Problem solving and computation for scientists and engineers, PHI (1993).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|                        | 2. A.V. Aho et al., Data Structures and Algorithms, Pearson (2002).                               |
|------------------------|---------------------------------------------------------------------------------------------------|
|                        | <b>3.</b> I.P.Stavroulakis and S.A. Tersian, Partial Differential Equations: An Introduction with |
|                        | Mathematica and Maple, World-Scientific (1999).                                                   |
|                        | 4. R.E. Bryant and D.R.O'Hallaron, Computer Systems: A Programmers perspective, Pearson           |
|                        | (2016).                                                                                           |
|                        | 5. F.T. Willmore, et al., Introduction to Scientific and Technical Computing, CRC Press           |
|                        | (2017).                                                                                           |
| <b>Reference Books</b> | <b>1.</b> J.A. Storer, An Introduction to Data Structures and Algorithms, Springer (2001).        |
|                        | 2. R Lohner, Applied CFD Techniques, Wiley (2008).                                                |
|                        | 3. I.K.Shingareva and C.Lizárraga-Celaya, Maple and Mathematica, 2nd Ed., Springer                |
|                        | (2009).                                                                                           |
|                        | 4. F.E. Harris, Mathematics for Physical Science and Engineering: Symbolic Computing,             |
|                        | Elsevier (2014).                                                                                  |
| Prerequisite           | Introduction to Computing or equivalent                                                           |
|                        |                                                                                                   |

| Introduction of Macromolecules - CH5190 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                             | To give an overview of Polymers from a fundamental understanding based on the physics of macromolecules to graduate students doing research in the area of polymers. The course would be useful to understand how single polymer molecules of chains behave and how it is related to bulk properties and behaviour such as viscosity, mechanical/electric properties etc. Senior UG students can also benefit from this course since polymers are ubiquitous in nature and in a myriad of common as well as engineering applications. |
| Course Content                          | 1. The structure of macromolecules, Terms and definitions, Degree of polymerization,                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         | Molecular weight and its distribution, Types and classification: thermoplastics, thermosets,                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         | elastomers, copolymers, natural polymers, biopolymers - polysaccharides, poly nucleic acids,                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         | lipids, proteins, applications of polymers, degradability 2. Configurations and conformations,                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | three-dimensional structure of macromolecules 3. Polymer Single chain and its statistics,                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | Ideal chain, Size of a polymer chain, Statistical properties, persistence length, Kuhn length,                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | Entropy of a single chain, flexible, semi-flexible and rigid rod-like polymers 4. Interaction                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         | between macromolecules and solvents: molecular interactions, thermodynamics of mixing,                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | multi-component mixtures, emulsions, dispersions, suspensions and solutions 4. Polymer                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | blends and alloys, miscible and immiscible systems 5. Macromolecules in solid state,                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         | amorphous and crystalline polymers, glass transition, crystallization, liquid crystalline states                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|                        | 6. Mechanical properties and linear viscoelastic properties of polymers 7. Proton and electron |
|------------------------|------------------------------------------------------------------------------------------------|
|                        | conduction in polymers 8. Flow behaviour of polymers                                           |
| Text Books             |                                                                                                |
| <b>Reference Books</b> | 1. Fundamentals of Polymer Engineering, A Kumar and RK Gupta, Marcel Dekker 20032.             |
|                        | 2. Polymer Physics, UW Gedde, Chapman & Hall, 19953. Physics of Polymers, by G                 |
|                        | Strobel, SpringerVerlag, 19964. Molecular Biophysics, M Daune, Oxford University Press,        |
|                        | 1999                                                                                           |
| Prerequisite           |                                                                                                |

| Molecular Simulation of Soft Matter - CH5021 |                                                                                                   |
|----------------------------------------------|---------------------------------------------------------------------------------------------------|
| Description                                  | 1. To introduce a range of molecular simulation techniques that are used in modeling soft         |
|                                              | matter in various time and length scales. 2. To demonstrate the predictive capabilities of these  |
|                                              | methods by considering a set of case studies.                                                     |
| Course Content                               | 1. Introduction: Electronic, atomic, molecular and mesoscale soft-matter examples,                |
|                                              | interaction potentials [3 Lectures] 2. Essential principles of statistical mechanics: statistical |
|                                              | ensembles, thermodynamic averages, fluctuations, structural quantities, time correlation          |
|                                              | functions and transport coefficients [8 Lectures] 3. Monte Carlo simulations: Metropolis          |
|                                              | algorithm in various ensembles, free energy calculations, configuration bias MC, reverse          |
|                                              | Monte Carlo, lattice Monte Carlo simulations [10 Lectures] 4. Molecular Dynamics:                 |
|                                              | numerical algorithms to solve equation of motion, unconstrained and constrained dynamics          |
|                                              | (GROMACS package) [10 Lectures] 5. Brownian dynamics: over-damped dynamics (no                    |
|                                              | hydrodynamics) [3 Lectures] 6. Applications: case studies on phase-equilibria, adsorption of      |
|                                              | polymers and surfactants of surfaces/interfaces, transport property calculations (diffusivity,    |
|                                              | viscosity), phase-behaviour of self-propelling colloids, self-assembly of surfactants and         |
|                                              | patchy colloids. [7 Lectures]                                                                     |
| Text Books                                   | 1. Computer Simulation of Liquids, M. P. Allen., D. J. Tildesley, Oxford University Press,        |

|                        | 1989.                                                                                               |
|------------------------|-----------------------------------------------------------------------------------------------------|
|                        | 2. Understanding Molecular Simulation, D. Frankel, B. Smit, Academic Press, 2001                    |
| <b>Reference Books</b> | <b>1.</b> Molecular Modeling: Principles and Applications, 2nd Ed., A. Leach, Prentice Hall, 2001.  |
|                        | 2. The Art of Molecular Dynamic Simulation, 2nd Ed., D. C. Rapaport, Cambridge                      |
|                        | University Press, 2004.                                                                             |
|                        | <b>3.</b> Introduction to Modern Statistical Mechanics, D. Chandler, Oxford University Press, 1987. |
|                        | 4. Introduction to Computational Chemistry, 2nd Ed., F. Jensen, Wiley, 2007. 5. Molecular           |
|                        | Modeling Basics, J. H. Jensen, CRC Press, 2010.                                                     |
| Prerequisite           |                                                                                                     |

| Project I -PH5361, Project II – PH5362 & Project III – PH5363 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Description                                                   | Advanced Materials and Nanotechnology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Торіс                                                         | Effect of Free Volume Distribution in Hydrogels Using Molecular Dynamics Simulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Abstract                                                      | The polymer melts and hydrogel study with the help of free volume characterization<br>and its effect on the polymer properties. The latest study involves the importance of the<br>geometrical influence of pore size distribution on the relaxation of the polymer as well<br>as their mechanical properties, such as modulus of elasticity. This also involves the types<br>of water present in the hydrogel, such as tightly bonded water and bulky water. This<br>is mainly focused on the atomistic study by molecular dynamics simulations. A brief<br>insight into different types of probes and their corresponding free volume, as well as<br>the sensitivity of the probe diameter. The temperature variation in an anhydrous system<br>and the hydration percentage variation at room temperature are the main focus of the<br>study. A brief study of relaxation type and its relationship with free volume is also<br>enlightened. |  |